Math: Numbering Systems HowTo www.EASA66.com (c)

Decimal System

Decimal (base of 10) We use the decimal numbering system every day. It consists of 10 digits (hence the name decimal). The digits, from smallest to largest are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The next number after 9 goes in the next column.

The number 123 is built up as follows:

10^{3}	10^{2}	10^{1}	10^{0}	
Thousands	Hundreds	Tens	Ones	= 100 + 20 + 3 = 123
0	1	2	3	

Info from www.EASA-66.com

Binary System

Binary (base 2) The computer is using the binary numbering system. It can only recognize two states, power on or $\mathbf{off} = 1 \text{ or } 0$.

Once again, any number can be broken down into columns.

The number 123 in the decimal system is in binary as follows:

	2^{8}	$ 2^7$	$ 2^{6}$	$ 2^5$	$ 2^4$	$ 2^3$	2^{2}	$ 2^1$	2^{0}	
ĺ	256s	128s	64s	32s	16s	Eights	Fours	Twos	Ones	= 64 + 32 + 16 + 8 + 0 + 2 + 1 = 123
	0	0	1	1	1	1	0	1	1	

Info from www.EASA-66.com

Hexadecimal System

The hexadecimal numbering system consists of sixteen digits. The digits, from smallest to largest are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Using the hexadecimal numbering system, from right to left, the first column is the 1's column, then the 16's column, then the 256's, then the 4096's etc.. You multiply the number in each previous column by 16 Once again, any number can be broken down into columns.

The number 123 in the decimal system is in hexadecimal as follows:

 16^{3} 16^{2} 16^{1} 16^{0}

4096 256161 = 112 + 11 = 123 decimal $(112 = 7 \times 16 \text{ and } B = 11)$ 7 В 0 0

Info from www.EASA-66.com

Octal System

0

0

The Octal Number System uses base 8 includes only the digits 0 through 7. The Octal system is based on the binary system with a 3-bit boundary.

3x1) = 123

The number 123 in the decimal system is in octal as follows:

8^{4}	8^3	8^{2}	8^{1}	8^{0}		
4096	512	64	8	1	= 64 + 56 + 3 = 123 decimal	(64 + 8x7 +

1 Info from www.EASA-66.com

В	i	n	a	r	у		Numbers
64	32	16	8	4	2	1	Decimal
0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	2
0	0	0	0	0	1	1	3
0	0	0	0	1	0	0	4
0	0	0	0	1	0	1	5
0	0	1	1	0	1	1	27
0	1	1	0	0	0	0	48
1	0	1	1	1	0	0	92
1	1	1	0	1	0	1	117

7

3

To practice make up a number and verify with a calculator!

Info from www.EASA-66.com

Binary Coded Decimal System - BCD

To simplify true binary, a numbering system known as Binary Coded Decimal **BCD** was devised. Each digit of a decimal number is presented in binary = a 4 digit code for each number from 0 to 9.

Bi	nary	v Nu	mber	Decimal Digit
8	4	2	1	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9

Let's take the decimal number $351 = 351_{10}$ is in BCD = 0011 0101 0001_{BCD} and in true binary 101011111₂

Info from www.EASA-66.com

Binary	Octal	Decimal	Hex
0000	00	00	00
0001	01	01	01
0010	02	02	02
0011	03	03	03
0100	04	04	04
0101	05	05	05
0110	06	06	06
0111	07	07	07
1000	10	08	08
1001	11	09	09
1010	12	10	0A
1011	13	11	0B
1100	14	12	0C
1101	15	13	0D
1110	16	14	0E
1111	17	15	0F
1 0000	20	16	10

Hex to Binary Conversion

Convert the Hex number to its 4-bit binary equivalent. Combine the 4-bit sections by removing the spaces.

For example, the hey value $0AEB2_{xx}$ will be written:	Α	F	В	2
For example, the nex value $OAFD2_H$ will be written.	1010	1111	1011	0010

Binary to Hex Conversion

Break the binary number into 4-bit sections from the LSB to the MSB = Right to Left. Convert the 4-bit binary number to its Hex equivalent.

For example, the binary value for $101011110110010B$ will be written. A F B 2	For example, the binary value 1010111110110010 p will be written:	1010	1111	1011	0010
	For example, the binary value foroffffforforball will be written.	Α	F	В	2

Binary to Octal Conversion:

It is easy to convert from an integer binary number to octal. This is accomplished by:

Break the binary number into 3-bit sections from the LSB to the MSB = Right to Left. Convert the 3-bit binary number to its octal equivalent.

For example, the binary value 1010111110110010_B will be written by the second seco

ton	001	010	111	110	110	010
ten.	1	2	7	6	6	2

Octal to Binary Conversion:

It is also easy to convert from an integer octal number to binary. This is accomplished by: Convert the decimal number to its 3-bit binary equivalent.

Combine the 3-bit sections by removing the spaces.

The octal value 197669 a will be written:	1	2	7	6	6	2
The octai value $127002Q$ will be written.	001	010	111	110	110	010

Info from www.EASA-66.com