Elektrics & Maths! Internal Training material from www.EASA66.com

Single modules cost Euro 20 to 70 and can be opened immediately!

1 Ampere is 1 Coulomb per Second = $6.25 \cdot 10^{18}$ Elektrons per Second. Please write down that number with all its zeros $6.25 \cdot 10^{18}$!

A dry cell battery has 1.5 Volt. A 12 Volt Battery has cells?

A lead acid accumulator has a nominal voltage per cell of 2.1 Volts. A 24 Volt accumulator has got how many cells ?

A NiCad-Accumulator has a nominal voltage per cell of 1.25 Volts. A 12 Volt-Accumulator has got how many cells ?

A NiCad-Accumulator has a constant discharge of 90% of its capacity. A 50Ah Aaccumulator has got how many Ah left?

Ohms law is $I = \frac{E}{R}$ and the power law is $P = E \cdot I$, A 115V light with 30 Ω has got a current of A and a power of W.

Power is measured in Watt. 1 HP has 746 Watts. 1kW has HP!

Elektrics & Maths! Internal Training material from www.EASA66.com

One Watt is one Joule per Second. 500J/s are ____ Watts and ____ Amperes at 10V.

Voltages in a series circuit: $V_t = V_1 + V_2 + V_3 + \dots$ V_t is 115V, V_1 is 28V, V_2 is 55V V_3 is _____ Volt.

Resistances in a series circuit: $R_t = R_1 + R_2 + R_3 + \dots$ R_t is 234 Ω , R_1 is 19 Ω , R_2 is 123 Ω , R_3 is ____ Ω .

Currents in a series circuit: $I_t = I_1 = I_2 = I_3 = \dots$

Voltages in a parallel circuit are everywhere the same!

Currents in a parallel circuit: $I_t = I_1 + I_2 + I_3 + \dots$

Resistances in a parallel circuit: $1/R_t = 1/R_1 + 1/R_2 + 1/R_3 + \dots$ In a parallel circuit R_1 is 5 Ω , R_2 is 12 Ω , R_3 is 12 Ω . R_t is ____ Ω ? In a parallel circuit R_t is always smaller than the smallest resistor!!!

Capacitors in a series circuit: $1/C_t = 1/C_1 + 1/C_2 + 1/C_3 + \dots$ apacitors in a series circuit: C_1 is 8μ F, C_2 is 7μ F, C_3 is 12μ F. C_t ist _____ In a capacitiv series circuit C_t is always smaller than the smallest capacitor!!!

Capacitors in a parallel circuit: : $C_t = C_1 + C_2 + C_3 + \dots$ C_1 is 5μ F, C_2 is 7μ F, C_3 is 22μ F. C_t is ----

Inductors in a series circuit: $L_t = L_1 + L_2 + L_3 + \dots$

Inductors in a parallel circuit: $1/L_t = 1/L_1 + 1/L_2 + 1/L_3 + \dots$ Inductors in a parallel circuit: L_1 is 5mH, L_2 is 3mH, L_3 is 12mH. L_t is _____ Inductors in a parallel circuit C_t is always smaller than the smallest inductor!!!

Elektrics & Maths! Internal Training material from www.EASA66.com

Single modules cost Euro 20 to 70 and can be opened immediately!

Elektrics & Maths! Internal Training material from www.EASA66.com

Single modules cost Euro 20 to 70 and can be opened immediately!

Transformers

Voltages E of transformers behave like windings N: $\frac{E_1}{E_2} = \frac{N_1}{N_2}$ The currents of transformers are inversely proportional to their windings N: $\frac{I_1}{I_2} = \frac{N_2}{N_1}$

Altenating Current

Peak Voltage = 1.414 x effective Voltage 115V Effektive-Voltage has a peak of ____ V Average Voltage = 0.636 x peak Voltage 100V average Voltage has a peak of ____ V Effective Voltage = RMS value = 0.707 x peak Voltage 100V has a Peak of ____ V

Angular frequency "Omega" of an alternating current $\omega = 2 \pi f$ oder $\omega = \frac{2\pi}{T}$ Frequency f = 1/T

The energy of a magnetic field of an inductor $E_{p,m} = \frac{1}{2} B \cdot H \cdot V$ or $E_{p,m} = \frac{1}{2} L \cdot I^2$

Induced voltage of a moving conductor E_{ind} equals magnetic density B in Teslar times length of the conductor l in Meter times velocity ν in m/s. $E_{ind} = B \cdot l \cdot \nu$

Alternating Current: Impedance consists of Resistance and Reactance. $P = E \ge I$ is Apparent Power in an A/C circuit $P = E \ge I \ge O$ is Real Power $P = E \ge I \ge I \ge O$ is Reactive Power 500W Apparent Power at $\cos \Phi \ 0,9$ has how much Real Power? 500W Apparent Power at $\sin \Phi \ 0,1$ has how much Reactive Power?

Power factor in % is the ratio of Real Power to Apparent Power. Apparent Power KVA ; Real Power in KW ; KVAR Reactive Power = Loss. 500kVA with a **power factor** of 75% has how much Real Power.

3-Phase Altenating Current

Voltage Phase to Phase is 1.73 times Voltage Phase to Line $E = \sqrt{3} \cdot E_{Str}$

Elektrics & Maths! Internal Training material from www.EASA66.com

Capacitors

The charge of a capacitor is Capacity x Voltage. $\mathbf{Q} = \mathbf{C} \cdot \mathbf{E}$

The capacity of a Capacitor is permittivity x area/distance between plates = $C = \epsilon_D \frac{A}{d}$ A capacitor is blocking Direct Current DC!

English-language power engineering students are advised to remember: "ELI the ICE man" or "ELI on ICE" – the voltage E leads the current I in an inductor L, the current leads the voltage in a capacitor C.

Another common mnemonic is CIVIL – in a capacitor (C) the current (I) leads voltage (V), voltage (V) leads current (I) in an inductor (L).

Calculating Charging/Discharging of a Capacitor

The Charging Time of a Capacitor depends of Capacitance C and the Resistance R. Therefore the product of Capacitance C and Resistance R is considered as time constant τ (tau). $\tau = R \cdot C$ Within that time constant τ (tau) charges or discharges a capacitor about 63% of its applied voltage. After only 0,69 τ a capacitor has reached 50% of its final or starting voltage. **After 5 time constants a capacitor is almost fully charged or discharged!**

The Charging od Discharging time 5 τ (tau) or 5 times Resistance times Capacity.

$Elektrics \ \& \ Maths! \ Internal \ Training \ material \ from \ www.EASA66.com$

Single modules cost Euro 20 to 70 and can be opened immediately!