EASA part 66 module 1 - Math Practice Geometry

presented by www.EASA66.com Areas square $= a^2$ rectangle = abparallelogram = bhtrapezoid = h/2 (b1 + b2) π is 3.14.... but sometimes you can even use 3 for calculation circle = πr^2 ellipse = π r1 r2 triangle = (1/2) b h equilateral triangle = $(1/4)\sqrt{3} a^2$ triangle given SAS = (1/2) a b sin C triangle Pythagoras $= c^2 = a^2 + b^2$ Presented for the UK-CAA EASA part 66 and equivalent by www.EASA66.com

Volumes

cube = a^3 rectangular prism = a b c irregular prism = b h cylinder = b h = π r² h pyramid = (1/3) b h cone = (1/3) b h = 1/3 π r² h sphere = (4/3) π r³ ellipsoid = (4/3) π r1 r2 r3

Presented for the UK-CAA EASA part 66 and equivalent by www.EASA66.com

Surface Area

cube = 6 a² cone = base + coat = π r² + π r l prism: (lateral area) = perimeter(b) L (total area) = perimeter(b) L + 2b sphere = 4 π r²

Presented for the UK-CAA EASA part 66 and equivalent by www.EASA66.com

The examples below are by no means in your exam. They are just as a final math practice!

Example:

The diameter of a piston is 5 inches. What is the circumference of the piston? As the circumference $C = \pi d = 3.14 \text{ x } 5 = 15.7$ inches

Example:

The diameter of a bore is 5 inches. What is the surface? As the area of a circle is π r² and the diameter d = 2 x radius r $3.14 \times 2.5 \times 2.5 = 19.625$ square inches

Example:

A cylinder has a diameter of 12cm and is 16cm high. What is the volume of the cylinder? $V = \pi r^2 h$ - as diameter d = 2 x radius r = 6 cm $V = 3.14 x 6 x 6 x 16 = 1808.64 cm^2$ or $18.0864 dm^2$

What is the surface of the same cylinder? SA = $2 \pi r^2 + 2 \pi r h = 2 \times 3.14 \times 6 \times 6 + 2 \times 3.14 \times 6 \times 16 = 226.08 + 602.88 = 828.96 cm^2$

A square has a side of 2cm and has a diagonal of ? cm? The diagonal of a square divides it in two equal triangles. By using the old Pythagoras = $c^2 = a^2 + b^2$, we find out that $c^2 = 2 \ge 2 + 2 \ge 2 = 8$ $c = \sqrt{8} = 2.828cm$

Example:

Calculate the **surface of a tube** with an outer radius of 10cm and an inner radius of 5cm. You calculate first the outer area of the circle $= \pi r^2 = 3.14 \text{ x} (10 \text{ cm})^2 = 3.14 \text{ x} 10 \text{ x} 10 = 314 \text{ cm}^2$ minus the inner circle

 $3.14 \text{ x} (5\text{cm})^2 = 3.14 \text{ x} 5 \text{ x} 5 = 78.5\text{cm}^2$ equals $314-78.5 = 235.5\text{cm}^2$

Example:

You want to **build a tent** with a round floor of $10m^2$ and 2.40m high. How many square meter of canvas do we need?

We already know the floor with $10m^2$

Circle area $A = \pi r^2$ We must find out the radius **r** to be able to calculate the the circumference.

We transpose the circle formula

 $A = 3.14 r^2 to A/3.14 = r^2$

You forgot how to do it? See Recall your Math! We find out **r** by extracting the root = $\sqrt{A/3.14} = \mathbf{r}$ $\sqrt{10m^2/3.14} = \mathbf{r} = 1.78m$ As we know now the radius $\mathbf{r} = 1.78m$, the base and the height is 2.4m, we must do a triangular calculation to find out the length of the side **l**. By using the old Pythagoras = $c^2 = a^2 + b^2$, we find out that $c^2 = 1.78 \ge 1.78 + 2.4 \ge 2.4 = 3.1684 + 5.76 = 8.9284$ $c = \sqrt{8.9284} = \mathbf{2.99}$ The formula for the coat is $\pi r l = 3.14 \ge 1.78 \ge 2.99 = \mathbf{16.72m}^2$ Total canvas is = base of $10m^2 + \text{coat of } 16.72m^2 = \mathbf{26.72m}^2$

Register to get more! - email to info@easa66.eu

EASA part 66 B1 or B1 and equivalent exam preparation. Ask for restrictions to be removed, or **extension** to a full B1 or B2 in addition to your licence!